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1 Abstract

In this paper I explore the value of transactional file systems by showing how such systems

can benefit existing applications while not adding additional complexity to the codebase. I

first discuss the concept of transactions in computing and how transactional semantics are

used to provide consistency and durability to an application’s state. I examine a new work

developed at the University of Texas, TxFS, which provides a very simple and powerful trans-

actional interface. I then introduce how existing systems can be modified to take advantage

of TxFS by modifying SQLite, a widely used embedded database, and by modifying OpenL-

DAP, a widely used implementation of the Lightweight Directory Access Protocol. These

modified systems benefit from running on TxFS by having a simplified transactional system,

reduced locking, no user-level logging, and enhanced support for multithreaded operations.

Additionally, I show how simple it is to port existing systems to TxFS, and demonstrate

how easy it would be for other systems to adopt TxFS to ensure durability and consistency

for their users.

2 Introduction

Outside of small projects which read and write binary data directly to files, most applications

rely on a database of some form to manage their data. Databases are scalable abstractions

on top of direct read() and write() system calls that provide application developers with

powerful APIs for data management. One of the most important requirements for a database

system is durability. Users expect their data to remain valid upon power loss, system crash,

or when multiple applications are attempting to modify the same data.

Any system that performs any sort of data manipulation needs to provide its users with

some form of crash consistency and concurrent-modification protection. These guarantees

are best described in the form of transactional semantics. Neither modern commodity file

systems nor modern commodity operating systems expose a standard way for users to update

arbitrary amounts of data atomically, which forces application writers to manufacture their

3



own methods for atomic updates at user-level [23, 8]. Writing applications in this way can

be difficult and can introduce bugs, data races, data loss, and data corruption [23, 38].

Additionally, this practice leads to a large amount of redundant software being developed,

as many different systems attempt to reimplement the same concepts in different ways.

In order to address the lack of a standard atomic update interface, a new file system has

been developed to provide applications with a transactional interface. This Transactional

Filesystem, or TxFS, modifies the ext4 file system journal to add a simple set of new

systems calls for applications to begin, commit, and abort transactions that are composed

of an arbitrary number of complex file operations. This elegant solution only modifies the

file system, adding no major modifications to any other part of the kernel. By providing this

standardized interface, multiple applications can easily use transactions without having to

reimplement the logic.

In this paper I discuss the value of transactional file systems and address whether or not

the guarantees provided by the system are worth the cost of modification to the operating

system and existing applications. I introduce a modified version of SQLite that replaces

the regular implementation of SQLite transactions with file system transactions that TxFS

provides. I then describe the modifications done to SQLite in order for it to use TxFS

transactions and the simplifications to the SQLite codebase that were gained because of

TxFS. I also explain how I modified OpenLDAP to take advantage of TxFS transactions,

and discuss how certain kinds of operations have to be altered in order to accommodate

for transactional semantics. I then evaluate the performance of both of these systems by

analyzing a number of benchmarks and show the performance difference between the TxFS

implementations and the standard Linux versions. Finally, I discuss related work.

3 Motivation

We live in the age of “Big Data” — we are able to collect large amounts of data, and now we

face the problems associated with processing and making use of such data [7]. Of particular

interest as it relates to this project is the ability to store this information. As we demand
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more from our storage systems, issues of data consistency become essential. Journaling File

Systems are one method of addressing this problem at the operating system level. However,

this is a solution that solves consistency issues for primitive operations only, such as read(),

write(), or atomic rename() [1]. Applications can build upon these primitives, but in order

for them to guarantee consistency for higher level user transactions, they must be written

with particular care to ensure data consistency, and even then they are prone to faults and

data races.

3.1 Data Consistency

One major issue surrounding writing data to permanent storage is the possibility of system

failure (e.g. power outage or fatal system error) or user error (e.g. allowing undergraduates

sudo access on research machines) during the middle of a series of updates. This could leave

the data in an indeterminate state, requiring tedious and error-prone manual data recovery.

Transactional semantics have been the solution for many databasing systems — either an

entire set of updates occur and are stable on disk, or none of the updates occur, meaning that

they can be reapplied at system recovery. However, the generally complex implementation

of user-level transactions causes them to be inefficient. By moving transactional logic into

the kernel, user applications would be greatly simplified.

3.2 Performance

A quick search on your favorite or least-favorite search engine will show that database per-

formance is a well-researched topic and is important for writers of I/O bound applications.

SQLite, as well as other databases, use a separate file for journaling. However, using a file

for the journal causes SQLite to suffer from double journaling, causing 73% slowdown in

some cases [31]. Using TxFS eliminates double journaling, and therefore increases the per-

formance of systems that suffer from this problem. Other applications, such as OpenLDAP,

protect their state by way of reader-writer locks, so that concurrent processes cannot acci-

dentally modify the same data. This strategy limits concurrency, and is often unnecessary,

5



such as in OpenLDAP, where separate entries are located in separate files and can be safely

modified concurrently. By protecting against concurrency using TxFS transactions, the only

operations that get aborted are ones that try to concurrently modify the same data set as

another running operations. This leads to higher average operational throughput.

3.3 SQLite

SQLite is a highly portable database system, with the database residing on a single file and

an additional journal file for crash consistency. With this design, simply moving database

files allows SQLite to be run on different file systems and operating systems [35]. SQLite is

an embedded database, which means it is designed to run without a dedicated server process.

SQLite databases simply exist as files on disk, and all an application needs to do to access a

SQLite database is link with sqlite.h and perform queries with sqlite3 exec(). SQLite’s

popularity [35], along with its relative simplicity, made it an ideal candidate for modification

to run on TxFS.

3.4 OpenLDAP

OpenLDAP [11] is a widely used and well supported implementation of the Lightweight

Directory Access Protocol. This system is commonly used to provide authentication and

organize authentication information about users. OpenLDAP can be configured to use a

variety of different storage backends, from MDB, Berkeley DB, to simple ldif (LDAP Data

Interchange Format) file backend [11]. In this paper, I focus on the ldif backend, as it is the

easy-to-use backend for OpenLDAP, but has lower performance compared to the other back-

ends [11]. The ldif backend uses plaintext ldif files and directory hierarchies to organize the

LDAP data, instead of using a database construct. This backend uses atomic file and direc-

tory renaming in order to provide its durability and consistency guarantees. This can result

in temporary files and directories being left on disk during the event of unexpected system

shutdown, which requires lengthy manual cleanup by a system administrator. By modifying

OpenLDAP, I hope to improve performance over the standard Linux implementation, as well
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1 copy(file, tmpfile)

2 write(tmpfile, data)

3 rename(tmpfile, file)

Listing 1: Simple technique for providing atomic updates to a file. By copying the file’s con-

tents into a temporary file, making edits to the temporary file, then atomically renaming the

temporary file to reference the original file, the user either sees the old file or the completely

updated file, effectively making the updates atomic.

as eliminate the undesirable consequences of atomic renaming logic.

4 Background

I first describe the crash consistency problem, how journaling solves the problem, how trans-

actions can be built on top of journaling to solve the problem, and how it is implemented both

in unmodified SQLite and TxFS. I also discuss how durability and consistency is achieved

in OpenLDAP.

4.1 Atomic Renaming

Listing 1 shows an example of atomic renaming, a simple method for providing atomic

updates to a file [27]. This technique is simple to implement, but ends up being costly in

terms of additional storage space and time (potentially taking 2× space on disk). It can

also end up leaving temporary files on disk in the event of a crash, which requires manual

recovery. This technique is used by the ldif backend to OpenLDAP for entry creation and

entry modification, since entry files tend to be small on average (approximately 0.5 KB).

4.2 Journaling

A single file system update typically involves updating multiple structures on storage [1, 26].

An example would be the creation of a new directory. Not only does the parent directory
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have to update its data, but the file system metadata structures (such are the inode bitmap,

data bitmap, and superblock) must also be updated. In file systems without journaling

support (such as ext2) [4], if the system crashes or power is lost in the middle of updating

storage, the file system could be left in an inconsistent state.

A variety of techniques have been developed to ensure file system crash-consistency,

such as fsck [6, 24], copy-on-write [16, 18, 36, 29], soft updates [30, 12], backpointer-based

consistency [9], and journaling [26, 8].

Journaling is employed by a number of file systems such as Windows NTFS [33], SGI

XFS [37], IBM JFS [3], ext3 [39, 40, 4], and ext4 [19]. At a high level, the technique works

as follows: changes to the file system are grouped into “transactions”, and first written

to a special location on storage called the journal. Ensuring that the journal writes are

safely persisted is called committing. After committing a transaction, the file system is then

updated in-place in a process called checkpointing. If the system crashes before the journal

is fully written, the interrupted operation will be aborted. If the system crashes after the

journal is written, the file system re-reads the journal and performs checkpointing again. As

a result, the file system updates in each transaction are atomically applied to the file system,

and consistency is ensured.

Example — ext4: In ext4 journaling, when a thread updates part of the file system, it

becomes part of the currently running transaction. ext4 does physical journaling, so the

data and metadata blocks that are affected by the update are copied entirely into the journal.

When any thread calls fsync(), or at the end of a user-defined time period (the default being

5 seconds), the running transaction is committed, and a new running transaction is started.

Note that there is only one transaction running or being committed at any given point —

concurrent transactions are not supported. The ext4 journal transactions provide atomicity

and durability, and ensure that a minimal amount of work is lost upon system crash (with

data loss being bound by the last call to fsync() or the last automatic checkpoint).

ext4 has three journal modes: ordered (default), data, and writeback. In data mode,

all data and metadata is first copied into the journal and then checkpointed. data mode
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provides the strongest consistency guarantees of ext4 — files cannot end up with garbage

data after a crash. Since copying data into the journal then updating in place is expen-

sive (sequential writes achieve half the bandwidth [26]), by default only metadata (e.g. file

inodes) are journaled in the default ordered mode. ordered mode ensures that the data as-

sociated with a transaction is persisted before the metadata. While ordered mode performs

better than data mode, ordered mode allows files to contain garbage data after a crash.

Finally, writeback mode has the highest performance, but does not provide any consistency

guarantees about data — only metadata.

4.3 Database Transactions

Databases have long been implementing transactions as their method of ACID (Atomicity,

Consistency, Isolation, Durability) properties [5]. A transaction is a method of performing

an operation in a way that either happens completely (atomicity), obeys set rules or formats

(consistency), does not interfere with other concurrent transactions (isolation), and persists

on system power down or crash (durability) [14]. Databases implement transactions with a

combination of fsync() calls, atomic operations like rename(), and the use of temporary

files and locking.

4.3.1 Bugs

Unsurprisingly, application-specific solutions for persistent atomic updates (even in stable

and widely-used applications like git) contain many bugs that lead to data loss and cor-

ruption [23]. Furthermore, such solutions are not portable across file systems, introducing

subtle bugs that can linger for years [23].

4.3.2 Double Journaling

Another issue that occurs by implementing transactions at user level is double journaling [31].

This problem occurs because databases use a separate file for journaling. As shown in Fig-

ure 1, double journaling occurs when a database runs on top of a journaling file system (such
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INSERT data INTO db-file

WAL file DB file

FS journal FS

1) initial write

4) checkpoint

2) fs journaling of WAL

5) fs journaling of DB

3) fs checkpoint of WAL

6) fs checkpoint of DB

Figure 1: The double journaling problem occurs when a database uses a separate journal

file. When changes are written to the journal, they are also journaled by the file system.

Subsequent checkpoints back to the database file are journaled as well. This results in a single

change being journaled twice, hence the name double journaling. Note that these writes also

occur for metadata changes as well as data changes. Only one generic set of arrows are

shown here.
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INSERT data INTO db-file

DB file

FS journal FS

1) initial write

2) fs journaling

3) fs checkpoint

Figure 2: How SQLite changes are journaled when using TxFS. TxFS eliminates double

journaling.

as ext4). Double journaling is a major cause of write amplification, which is the amplifica-

tion of I/O due to journaling. Since the same data is journaled in different places, a single

write can turn into multiple writes of the same data to different locations, which increases

latency and reduces the lifespan of the underlying storage medium (and can lead to even

more write amplification due to wear-leveling if the writes are being performed on an SSD).

Figure 2 shows how TxFS eliminates double journaling. By using file system transactions

in place of a user-level journal file, TxFS eliminates the double journaling problem, and

significantly reduces the amount of I/O performed, which then results in higher throughput.

4.3.3 Concurrency Problems

In order to provide proper isolation at the user-level, applications implementing transactions

have to use some form of locking to prevent concurrent modification. OpenLDAP uses

thread-level reader/writer locks to block concurrent modifications, whereas SQLite mainly

uses file-level locking. Figure 3 shows how locking is implemented in unaltered SQLite.

Any number of database connections can hold a read lock on a particular database file.
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NO LOCK

(no access)

SHARED LOCK

(read-only access)

RESERVED LOCK

(preparing to get write access)

PENDING LOCK

(preparing to get write access)

EXCLUSIVE LOCK

(read and write access)

Figure 3: Process of file locking as performed in SQLite. RESERVED and PENDING

locks are used by a thread to claim priority on a write lock while waiting for current readers

(threads with SHARED locks) to drop their locks. While a single process holds a RESERVED

lock, other processes can still acquire new SHARED locks. While holding a PENDING lock

(which is never acquired directly — only acquired through a request for an EXCLUSIVE

lock), no new SHARED locks can be acquired. Once no other threads are holding locks on

the database, a EXCLUSIVE lock is finally granted to the writer. Note that these locks are

coarse-grain — these locks apply to the entire file, not just a particular page or a particular

database table.
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1 open(/journal, O_CREATE)

2 write(/journal, "old")

3 fsync(/journal)

4 fsync(/)

5 write(/db, "new")

6 fsync(/db)

7 unlink(/journal)

8 fsync(/)

Listing 2: System-call sequence in SQLite for updating database in crash-consistent manner.

However, only one connection can hold a write lock. The write lock is exclusive, and no other

connection can hold read locks while there is a write lock on the file. Additionally, SQLite

uses coarse in-memory locking to protect entire database files, so individual tables within

a file cannot be updated concurrently. Achieving multithreaded performance scalability for

SQLite requires multiple database files. However, because SQLite has no concurrency control

for separate processes, writes to a database file lock the file and another process must wait

for the database file to be unlocked before the file can be opened for reading or writing.

Multiple readers are allowed. When running with TxFS transactions, multiple processes can

update the same SQLite database, and transactions that update disjoint regions of the file

will succeed.

4.4 Journaling in SQLite

Current file systems do not expose a standard mechanism that applications can use to atomi-

cally update arbitrary amounts of data on storage. Many applications build ad-hoc solutions

on top of system calls such as fsync() and rename() to atomically update state [23, 20].

Such solutions are complex, often involving multiple files and a long sequence of system calls.

SQLite can maintain three files to atomically update a single byte in a database: a rollback-

journal file, a database file, and possibly a master journal file [35, 20]. SQLite performs a
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sequence of write(), fsync(), and unlink() calls on these files to ensure crash consistency.

DELETE mode (Rollback mode): Listing 2 illustrates the system calls issued by SQLite

to update a single row in the database in its default crash-consistency mode, which is known

as DELETE mode. First, SQLite creates a journal, and the old contents are copied to it.

It flushes the journal to storage with fsync(). To ensure that the new directory entry

pointing to journal is also persisted, it flushes the root directory with fsync(). It then

writes database file db and flushes it to storage. It unlinks the journal file and makes the

deletion persistent with another fsync() on the root directory. Truncate mode is another

similar mode, however the journal file is truncated to 0 length rather than being unlinked

— this tends to be faster on most systems.

WAL mode: WAL mode is the newest journaling mode offered by SQLite and is the most

performant under most circumstances [35]. The WAL approach inverts traditional journaling.

In WAL mode, all of the original content is stored in the database file and any changes

are added to a separate journal file. A transaction commit occurs when a special record

indicating a commit is appended to the WAL journal — commits can therefore occur without

writing to the original database. This allows readers to continue operating from the original

unaltered database while changes are simultaneously being committed into the WAL journal.

4.5 TxFS

TxFS is a file system that was designed to offer primitives that allow applications to easily

and efficiently achieve crash consistency. While other systems have provided applications

with transactions for crash consistency, they have required that either the whole operating

system be modified [41, 15, 25], use specialized hardware [20, 10, 26, 32], induce significant

performance degradation [13, 22, 21, 42, 34] or create a large amount of work on the part

of the developer [28]. TxFS offers a simple system call interface for handling file system

transactions which does not require major modifications to an application’s source code in

order for it to adopt TxFS transactions, as will be shown in section 6.
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1 fs_tx_begin()

2 write(/db, "new")

3 fs_tx_commit()

4 fsync(/db)

Listing 3: Using TxFS Transactions to update a database in a crash-consistent manner.

The call to fsync() ensures the TxFS transaction is durable.

4.5.1 TxFS API

TxFS provides developers with three system calls: fs tx begin(), which begins a transac-

tion; fs tx end(), which ends a transaction and attempts to commit it; and fs tx abort(),

which discards all file system updates done as part of the current transaction. On commit, all

file system updates in an application-level transaction are persisted in an atomic fashion —

after a crash, users see none of the file system updates, or all of them. fs tx end() returns

an error code indicating whether the transaction was committed successfully (the commit

may fail for various reasons, such as the transaction being too big, or the file system has run

out of space); the application can then choose to retry the transaction. Application-level

transactions provide isolation at the level of repeatable reads [2]. Nested application-level

transactions are flattened into a single transaction.

Listing 3 shows how application-level transactions can be used to perform the same

SQLite database update as shown in Listing 2. This code is much simpler, and allows appli-

cation writers to avoid bugs, simplify internal transactional APIs, and eliminate performance

bottlenecks like file locking.

5 Design

The main goals of this project were to port OpenLDAP and SQLite to using TxFS transac-

tions. This required two main modifications to the standard logic of these existing systems:

the removal of the current method of concurrency control and means of providing ACID
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1 retry_loop:

2 fs_tx_begin()

3 write(file, data)

4 if (CONFLICT)

5 fs_tx_abort()

6 goto retry_loop

7 fs_tx_end()

8 if (CONFLICT) goto retry_loop

Listing 4: Basic sequence for performing a write transaction using TxFS.

properties, and the addition of transactional abort-and-retry logic in its place.

5.1 Removal of File and Thread Locking

SQLite maintains coarse-grained file locks for read and write transactions, and only allows

one writer at a time in order to maintain file consistency. Additionally, OpenLDAP maintains

reader-writer locks in order to prevent concurrent modifications, at the cost of parallelism.

TxFS provides isolation by only allowing one transaction to modify a particular block at a

time, with all other competing transactions receiving a ECONFLICT error. By allowing TxFS

to handle isolation, there is no need to lock files that are modified transactionally. Because

of this, SQLite can be modified to eliminate all file locking, and OpenLDAP can have all of

its locking removed as well. This modification allows for higher levels of concurrency, which

improves performance for multithreaded applications.

5.2 Transactional Aborts and Retries

Listing 4 shows the basic flow for a thread in TxFS that is attempting to commit a write

transaction. In a multithreaded environment with a small working set of files, write conflicts

are a very real possibility. Therefore, threads must check to see if their transactions are

successful — on conflict, TxFS will set errno to ECONFLICT. If the process still wants to

16



attempt its update, it has to start a new transaction and replay all file operations. This

abort-and-retry style of logic is implemented in many places throughout both of these systems

under TxFS.

6 Implementation

In this section, I describe the modifications performed on both SQLite and OpenLDAP,

and how the modified versions of these two applications end up differing from the standard

implementations.

6.1 SQLite

The TxFS project team selected SQLite (version 3.12.1), which was the current version when

SQLite was starting to be used as a benchmark for TxFS (April 2016). We introduced a

new journaling mode, FS, similar to SQLite’s WAL mode, to implement TxFS transactions

in SQLite. SQLite requires two guarantees from FS mode: atomic commits and repeatable

reads, both of which are provided by TxFS transactions. These modifications amounted to

approximately 600 LOC.

The majority of SQLite changes were made to the pager, the interface responsible for

reading and writing database pages to disk. The other changes involved correctly propagating

error messages if the TxFS transaction failed (e.g. if the transaction was too big) and

plumbing changes to make sure that FS was a valid journaling mode for SQLite.

One major goal of the project was to export the user-level implementation of transactions

as done in SQLite with calls to fs tx begin() and fs tx end(). The modifications made

to SQLite can be grouped into two main categories: removal of file locking and removal

of fsync() and fdatasync() calls. Additionally, using SQLite in FS mode requires slight

modifications to existing applications that use large multi-line SQLite transactions.
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6.1.1 File Locking Modifications

The nature of TxFS transactions is that locking is unnecessary — any number of threads

can attempt to write a file, and as long as the writes are not conflicting (e.g. are to different

parts of the file), no thread is any the wiser. Should there be a conflict during an opera-

tion, the SQLite interface will return a SQLITE CONFLICT error code to the user, which will

indicate that the current thread of execution should abort the current transaction (make a

fs tx abort() call) and retry/perform a different operation.

SQLite’s FS journaling mode does not acquire file locks — it depends upon TxFS to

enforce isolation. This allows the implementation to be simpler and increases performance.

This serves as an example where applications become simpler by depending upon the proper-

ties provided by system-level transactions. This modification was also very simple to make,

as only a few lines of code had to be disabled in FS mode in order to disable all file locking

performed by SQLite.

6.1.2 Removal of fsync() and fdatasync() Calls

Unaltered SQLite has to make many calls to fsync() and fdatasync() while committing a

transaction in order for the transaction to provide durability. However, these sync calls are

redundant during the middle of a TxFS transaction, and can hurt performance — only a call

to fsync() after a fs tx end() will help transactional durability. SQLite databases running

in FS mode disable SQLite’s usual calls to fsync() and fdatasync()— this will reduce the

number of file operations that occur during a transaction, which will increase throughput.

6.1.3 Changes to SQLite Applications

SQLite handles transactions in two different modes: autocommit mode, used for single-line

transactions, and non-autocommit mode, used for multi-line transactions where the user

makes explicit calls to “BEGIN TRANSACTION;” and “END TRANSACTION;”. When

SQLite is in FS mode and is in autocommit mode, it automatically triggers fs tx end().

Any error during the SQLite transaction results in triggering fs tx abort() and immediate
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1 rc = sqlite3_exec(SQL query)

2 if (rc != SQLITE_OK) return FAILURE

3 return SUCCESS

Listing 5: Example workflow for unal-

tered SQLite

1 while (success == 0)

2 fs_tx_begin()

3 rc = sqlite3_exec(SQL query)

4 if (rc == SQLITE_CONFLICT)

5 fs_tx_abort()

6 continue

7 success = fs_tx_end()

8 if (rc != SQLITE_OK) return FAILURE

9 return SUCCESS

Listing 6: Example workflow for TxFS

retry. If SQLite is not in autocommit mode while in FS mode, then SQLite will not call

fs tx begin() and fs tx end() automatically, and the user will be responsible for handling

the abort-retry logic. This difference in SQLite API usage is shown in Listings 5 and 6.

Running without autocommit mode on is only slightly more cumbersome to the user, but

allows the user more control on the contents of a transaction, and allows users to create

transactions that cross multiple databases or even across abstractions (e.g. a transaction

involving raw files and a SQLite database).

6.1.4 Consequences of SQLite Modification

Porting SQLite to TxFS prompted the modification of TxFS to allow a limited set of oper-

ations to fail without aborting the transaction. In the original SQLite code it was common

to call unlink() on files without first checking to see if the file existed. While an operation

like this has no negative side effects on a normal file system, when running inside a TxFS

transaction an unlink() failure aborts the transaction. Many other codebases contain sim-

ilar code because on traditional file systems such code is essentially turned into a harmless

no-op. The team developing TxFS believes that TxFS will have to adapted in similar ways

for other legacy software.
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6.2 OpenLDAP

I modified OpenLDAP version 2.4.44, the current version as of April 2017. The number of

changes to the ldif backend totaled to approximately 500 LOC, with an additional 250 LOC

for caching search results. This caching logic was adapted from a similar port of OpenLDAP

as reported in the TxOS study [25].

6.2.1 Wrapping Read and Write Accesses

In the standard implementation of OpenLDAP, read and write accesses are protected by

a read-writer thread lock, in order to protect against concurrent access and modification.

However, in the case that writes are happening to different locations (e.g. two different

entries, which are stored in two different files in the ldif backend), this limits concurrency. I

altered the ldif backend to wrap transactions around the main backend calls (the ldif back *

and ldif tool entry * family of functions), and replaced the reader-writer locks with a

TxFS abort-and-retry loop.

6.2.2 Caching Search Results

A big part of the functionality of OpenLDAP is to search for records that have been stored

in the system. Search operations emit search results to the client process while the search is

being conducted, so if TxFS abort-and-retry loops had been naively added, the transaction

retry would have caused some of the search results to be sent to the client multiple times.

Therefore, in the TxFS modified version, search results are cached and sent them to the

client only after completing the entire search operation.

7 Evaluation

The following evaluations were performed by myself and the graduate students who were

working on the TxFS project. This section discusses how the TxFS implementations of

SQLite and OpenLDAP compare to the Linux implementations, and also evaluates why
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Performance (Ops/s) I/O (MB) Sync/tx

Journal mode Insert Update Insert Update Insert Update

Rollback (default) 53899.7 28001 1977 3946 4 10

Truncate 53496.3 (0.99×) 28907 (1.03×) 1976 3944 4 10

WAL 39774.5 (0.74×) 34551.9 (1.23×) 3944 3928 3 3

TxFS 51398.5 (0.95×) 36695.8 (1.31×) 1970 3916 1 1

Rollback with TxFS 52148.1 (0.97×) 31924.2 (1.14×) 1970 3915 1 1

No journal (unsafe) 54888.4 (1.02×) 50608 (1.81×) 1966 1956 1 1

Table 1: The table compares operations per second (larger is better) and total amount of I/O

for SQLite executing 1.5M 1KB operations grouping 10K operations in a transaction using

different journaling modes (including TxFS). The database is prepopulated with 15M rows.

All experiments use SQLite’s synchronous mode (its default), which ensures that unmodified

SQLite’s transactions are durable.

TxFS performs better or worse in our benchmarks.

Testbed: Our experimental testbed consisted of a machine with a 6 core Intel Xeon E5-

2620 CPU, 8 GB DDR3 RAM, 250 GB Samsung SSD 850, and 512 GB Samsung SSD 850.

All experiments were performed on Ubuntu 16.04 LTS and Linux kernel 3.18.22. The kernel

was installed on the 512 GB SSD and all experiments were done on the separate 250 GB

SSD. The experimental SSD was run at low utilization (around 20%) to prevent confounding

factors from wear-leveling firmware.

7.1 SQLite

Single-threaded SQLite: Table 1 shows that TxFS is the best performing option for

SQLite updates. Data is the average of five trials with standard deviations below 2.2% of

the mean. For the update workload, TxFS is 31% faster than the default. We report I/O

totals as part of our validation that TxFS correctly writes all data in a crash consistent
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Journal mode Time (s) Stall (s) Read (MB) Write (MB)

Rollback (default) 17.07 0.24 6.73 404

Truncate 16.99 0.27 6.70 409

WAL 10.67 0.05 6.74 202

TxFS 5.20 (3.3×) 1.24 6.71 122

No journal (unsafe) 10.67 0.22 6.73 406

Table 2: Six threads read and update twelve database files, picking a random file, reading

a random row, hashing it and writing the hash to another randomly chosen database. Each

database is prepopulated with 100,000 1KB entries. Each database file is 131 MB.

manner. Several choices for SQLite logging mode, including TxFS, result in similar levels of

I/O that resemble the no-journal lower bound. WAL mode does write more data for the insert

workload, which harms its performance. Note that TxFS does not suffer WAL’s performance

shortfall on insert, and it surpasses its performance on update, making it a better alternative.

Although the file system journal is similar to a WAL log, TxFS does not generate redundant

I/O on insert because of its selective data journaling.

We ran similar experiments with small updates (16 bytes), where we found that there

is little difference in performance between SQLite’s different modes and TxFS. This shows

that small transactions do not have significant overhead in TxFS.

TxFS’s improved performance for the update workload is due to several factors. TxFS

reduces the number of data syncs from 10 (in Rollback and Truncate mode) or 3 (in WAL

mode) to only 1, which leads to better batching and re-ordering of writes inside a single

transaction. TxFS performs half its I/O to the journal, which is written sequentially. The

remaining I/O is done asynchronously via a periodic file system checkpoint that writes

the journaled blocks to in-place files. TxFS does not suffer from the double journaling

problem [31]. Even in realistic settings where performance is at a premium, transactions

provide a simple, clean interface to get significantly increased file system performance, while

maintaining crash safety.
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Multithreaded SQLite: The results of the multithreaded SQLite benchmark are pre-

sented in Table 2. We populated twelve databases, each with a single table with 100,000

1KB rows. We ran six threads (one for each physical core of the machine), which pick a

random database file and a random row and then read the row, compute the SHA-256 hash

and insert the result to a second randomly chosen database. The workload does small ap-

pending writes to the database files, with an estimated amount of 424 KB data written in

each run. We then compared the final state of the database for all cases to verify that all

data is properly written. For TxFS, stall time is time spent backing off after a transactional

conflict. After a conflict, one process waits for a random time before restarting in order

to avoid excessive conflicts (the retry interval is capped at 0.05s). For all other SQLite

journaling modes, stall time refers to the time spent waiting to gain exclusive access to the

file.

TxFS outperforms the default configuration by 3.3× and the best alternative (WAL mode)

by 2.1×. All journaling modes read about the same amount of data. They all have heavy

write amplification caused by small and fragmented insertions (the data size is only 424 KB).

Both WAL mode and TxFS have a much smaller write amplification compared to the other

modes. This is because the WAL log and the file system journal are all write-ahead-style logs,

which can batch fragmented writes into the same data block.

Because most SQLite journaling modes gain exclusive access to the database file for

writes, they spend about the same amount of time waiting for access (about 0.24s). WAL

mode spends significantly less time waiting, because it only needs to grab the database

read-write lock while writing to the WAL log. The data checkpoint from the WAL log to the

database file happens asynchronously, without blocking other writers. TxFS spends more

time backing off than the exclusive access wait time. The threads are busy waiting for the

database files, which occupies a CPU core while doing no work and therefore minimizes wait

latency. Backoff frees up a CPU, but wastes more time. However, the write concurrency

enabled by TxFS transactions more than compensates for backoff time.

TxFS mode outperforms no-journal mode because this mode still opens database files
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1-thread 6-thread

Linux TxFS Linux TxFS

AddJob 3517 2305 (0.66×) 6703 9836 (1.47×)

SearchJob 19 23 (1.21×) 97 107 (1.10×)

ModifyJob 2932 2445 (0.83×) 5101 9722 (1.90×)

Table 3: Operations per second for OpenLDAP workloads of different operation types.

The database contains 1,000 entries, with each entry being approximately 0.5 KB in size.

SearchJob runs 1,000 random searches, AddJob adds 1,000 new entries, and ModifyJob mod-

ifies each of the 1,000 entries in a random way.

1-AddJob, 1-SearchJob 1-AddJob, 5-SearchJob

Linux TxFS Linux TxFS

Average Throughput 375 1479 (3.94×) 808 989 (1.22×)

Table 4: Operations per second for the MultiJob OpenLDAP benchmark.

with an exclusive lock, preventing concurrency. While “real” databases like Oracle and

MySQL have good concurrent scalability, SQLite has found it difficult to achieve due to

file system limitations. TxFS removes these limitations and makes it easy to scale perfor-

mance for access to non-conflicting data. Additionally, TxFS has a smaller amount of write

amplification.

7.2 OpenLDAP

Table 3 compares the unaltered version (Linux) and the version that uses TxFS transactions

(TxFS). We gathered data using a modified a version of lb1, which is an open-source tool

for benchmarking OpenLDAP. Search operations are read-heavy, but they show moderate

speedups (21% for single thread and 10% for six threads). The performance of TxFS for

write-heavy workloads trails for the single threaded case where the overhead of system calls

1https://github.com/hamano/lb
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to begin and end transactions, along with the small amount of work in the transactions,

makes it impossible to amortize the overheads. The multithreaded scalability shows the

appeal of TxFS transactions, which increase performance by 47% and 90% for adding users

and modifying their records. The Linux implementation of OpenLDAP uses reader-writer

locks which limit concurrency. There are cases where concurrent writes are safe (e.g. to two

separate entries in two separate files), and TxFS allows these writes to occur concurrently,

giving TxFS higher multithreaded write performance.

Independent from performance, the TxFS port of OpenLDAP has crash consistency

advantages. When we killed server processes during a series of ModifyJobs, 96% of the

crashes resulted in temporary files being left in the base LDAP directory. These files must

be deleted by hand, which is time consuming and error-prone. On average, the number of

temporary files left behind was equal to 0.5% of the size of the modification job in entries

(e.g. for an operation of adding 10,000 entries, we found around 50 temporary files). TxFS

eliminates this problem completely; after a crash there are no orphaned temporary files.

Table 4 shows a mix of OpenLDAP activities with a single AddJob running concurrently

with either 1 or 5 SearchJobs. The workload models the common case use of OpenLDAP

where reads dominate writes. The database contained 100 entries, with each entry being

approximately 0.5 kB in size. The single-threaded version runs 3.9× faster with TxFS trans-

actions and the 6 core version runs 22% faster. The TxFS version has higher throughput,

but transaction abort-and-retry penalizes adds, since searches are slow and read from the

directory, and since adds modify the directory by adding a new entry, they get aborted

multiple times waiting on the same search, hindering AddJob throughput. The Linux imple-

mentation uses a read-writer lock for coordination, which is more fair, but has lower overall

throughput.

8 Related Work

TxOS [25] is operating system that was also designed to provide transactions. Unlike TxFS,

the approach taken adds significant complexity to the kernel; a large number of kernel data
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structures will have to rewritten to support transactions. Developing a correct transactional

database is extremely complicated, and retrofitting an existing kernel to do so is even more

so.

SQLite has previously been ported to suit many projects. One similar to this project

is X-FTL [17]. X-FTL modifies SQLite to use transactional semantics, as provided by the

flash translation layer, in order to more efficiently use flash memory and take advantage of

the firmware of the FTL, rather than trying to use user-level transaction implementations.

The modifications applied to SQLite in the X-FTL study are similar to the modifications

implemented in the course of this project, since both bypass the standard implementation

of SQLite transactions and instead use the transactional interface of the underlying system.

9 Conclusion

In this paper I demonstrated how TxFS’s simple interface is easy to use and simple for exist-

ing systems to adopt by porting both SQLite and OpenLDAP to use TxFS without having

to rewrite major parts of their existing codebase. I showed how both of these systems benefit

from using TxFS instead of traditional techniques for atomic updating. TxFS signficantly

increases the operational throughput of these systems while simulatenously simplifying parts

of their internal structure. These improvements make a good case for the benefit and future

use of transactional file systems, and for their reconsideration for mainstream adoption.
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