Towards Bug-free Persistent Memory Applications

Ian Neal
University of Michigan

Persistent Memory (PM) aims to revolutionize the storage-
memory hierarchy, but programming these systems is error-
prone. Our work investigates how to to help developers write
better, bug-free PM applications by automatically debugging
them. We first perform a study of bugs in persistent memory
applications to identify the opportunities and pain-points of
debugging these systems. Then, we discuss our work on AG-
AMOTTO, a generic and extensible system for automatically
detecting PM bugs. Unlike existing tools that rely on extensive
test cases or annotations, AGAMOTTO automatically detects
bugs in PM systems by extending symbolic execution to model
persistent memory. AGAMOTTO has so far identified 84 new
bugs in 5 different PM applications and frameworks while
incurring no false positives. We then discuss HIPPOCRATES,
a system that automatically fixes bugs in PM systems. HIP-
POCRATES “does no harm”: its fixes are guaranteed to fix
an PM bug without introducing new bugs. We show that HIp-
POCRATES produces fixes that are functionally equivalent to
developer fixes and that HIPPOCRATES fixes have performance
that rivals manually-developed code.

Persistent memory (PM) technologies aim to revolutionize
the storage-memory hierarchy. PM technologies, such as Intel
Optane DC [3], are roughly 8 x less expensive than DRAM [1]
and offer disk-like durability with access latencies that are only
2-3x higher than DRAM latencies [4]. PM can be accessed
using the conventional load and store instructions and thus
offers persistence without needing heavyweight file-system
operations. Popular applications (memcached, Redis) and
companies (VMware, Oracle) are employing PM.

Alas, programming PM systems is error-prone [7, 1 1]. Up-
dates to PM are cached in volatile CPU caches, requiring
developers to explicitly flush cache lines to guarantee that
updates are written to PM. Moreover, cache flushes are weakly
ordered on most architectures (i.e., flushes do not follow store
order), so developers must insert memory fences to order
updates as required for crash consistency. The misuse or omis-
sion of these mechanisms results in durability bugs which
compromise program correctness. Existing work on PM de-
bugging targets specific systems [9, 10] or requires significant
developer effort [5,6]. In contrast, we’re investigating systems
that help developers write bug-free PM applications by fully
automating the process of debugging them.

To begin our work on automating PM debugging, we per-
formed a study of 63 bugs in PM applications and APIs. We
first investigated the automation of bug finding. We identified
two application-independent patterns of PM misuse (missing
flush/fence and extra flush/fence) which cover the majority
(89%, or 56/63) of bugs in our study and can be detected au-

Andrew Quinn
University of Michigan

Baris Kasikci
University of Michigan

tomatically. The remaining bugs are application-specific; for
example, many involve misusing transactions when updating
data structures. Existing PM testing approaches conflate these
classes and require annotations or expensive model-checking
methods to detect even application-independent PM bugs.

We then examine the difficulty of fixing PM bugs, focusing
on durability bugs, the bugs caused by missing flushes/fences,
because they are application-independent bugs that lead to
data loss. We analyzed 26 reported and fixed bugs which
were discovered by Intel’s own bug finding tool, pmemcheck.
These bugs were arduous to manually debug and fix, taking
on average weeks (23 days) and up to months (66 days) to fix,
and require numerous attempts (13 commits on average) to
produce a complete fix. The main challenge with fixing these
bugs arises because of a key tradeoff between performance
and simplicity; each bug can be fixed in a myriad of differ-
ent ways which developers have to carefully consider before
implementing a patch. As a result, even though developers
have effective PM-specific bug finding tools, actually fixing a
durability bug in a PM system remains challenging.

Our work is the first to automate both PM bug finding
(AGAMOTTO) and bug fixing (HIPPOCRATES). Critically,
our work can be automatically applied to arbitrary PM
applications—it requires no unit tests, source-code modifica-
tions/annotations, nor does it place restrictions on application
behavior (e.g., applications can use arbitrary PM allocators).

First, we present AGAMOTTO [8] I a framework that uses
the insights from our study to automatically detect bugs in
PM applications. Rather than rely on unit tests, AGAMOTTO
uses symbolic execution [2] to thoroughly explore the state
space of a program. AGAMOTTO applies symbolic execu-
tion to PM by introducing a memory model to track updates
made to PM by the explored program paths. To mitigate the
infamous “path-explosion” problem in traditional symbolic
analysis, which arises because the state space of possible exe-
cutions grows exponentially, AGAMOTTO introduces a novel
search algorithm that targets execution states that are most
likely to lead to PM bugs. AGAMOTTO uses alias analysis
together with a back propogation algorithm to assign a priority
to execution states based upon the number of PM-modifying
operations (stores, flushes, etc.) that each state can reach; the
system steers symbolic execution towards program states that
can reach the most PM modifying operations.

To detect bugs, AGAMOTTO supports bug oracles, which
use the PM state that the system gathers along each execution
path to identify persistency bugs. AGAMOTTO automatically

1 See: https://www.usenix.org/conference/osdi20/
presentation/neal

https://www.usenix.org/conference/osdi20/presentation/neal
https://www.usenix.org/conference/osdi20/presentation/neal

detects PM bugs using two universal persistency bug oracles
based on the common application-independent patterns of PM
misuse identified by our study. To identify application-specific
persistency bugs, AGAMOTTO enables custom persistency bug
oracles—we implement two such oracles in AGAMOTTO to
detect bugs related to the misuse of PMDK’s transactional
API [5,6]. We used AGAMOTTO to find 84 new persistency
bugs in 5 real-world PM storage systems and research proto-
types. In particular, we found 13 new correctness and 70 new
performance bugs using the universal persistency bug oracles,
and 1 new correctness bug using a custom persistency bug
oracle. We report all bugs to their authors; so far 40 of them
have been confirmed and none denied.

We next present HIPPOCRATES?, an automated PM bug
fixing tool guaranteed to “do no harm”. HIPPOCRATES auto-
matically reasons through the performance/simplicity tradeoff
inherent in fixing PM bugs by mimicking the reasoning of
PM developers. The system considers two types of fixes.
Simple intraprocedural fixes insert a flush or fence in-line
with the store that is missing one and make it easy to reason
about the durability of the application. Unfortunatley, these
simple fixes lead to poor performance when they are often
accessed with volatile data (e.g., adding a flush in memcpy). So,
HIPPOCRATES considers more complex interprocedural fixes,
which add flush or fence operations to other functions in the
call stack that resulted in the missing flush. To perform an
interprocedural fix, HIPPOCRATES performs persistent subpro-
gram creation (i.e., duplicating a function and inserting flushes
and a single memory fence at each exit point to preserve pro-
gram semantics while adding durability mechanisms).

Critically, HIPPOCRATES “does no harm” by provably guar-
anteeing that the fixes that it inserts fix the bug without intro-
ducing any new bugs. We define a bug as the possibility of
incorrect program behavior. We show that HIPPOCRATES can
safely and automatically apply the three kinds of fixes that it
performs, namely intraprocedural fence, intraprocedural flush,
and persistent subprogram creation. Intuitively, this is because
the mechanisms that HIPPOCRATES uses to fix PM durability
bugs (cache-line flush and/or memory fence instructions) do
not introduce the possibility of any new program behaviors,
and can therefore not cause any new bugs. Intuitively, this is
because a missing durability instruction does not preclude the
effects of that instruction (e.g., memory pressure can evict ar-
bitrary cache lines without using an explicit cache-line flush).

HIPPOCRATES automates PM bug fixing by reusing the
output of PM bug finding tools to create safe fixes. HIP-
POCRATES computes a fix for each bug using a three-phase
process: first, it computes the simplest possible intraprocedural
fix; second, HIPPOCRATES performs “fix reduction,” where re-
dundant fixes (e.g., flushes to the same cache line) are merged
together; and third, it performs a heuristic transformation to
determine if a fix should be “hoisted,” i.e., if an intraprocedu-

2See:https://asplos—conference.org/papers/

ral fix should be converted into an interprocedural fix using
persistent subprogram creation. The heuristic chooses a level
in the call stack which is most likely to only operate on PM
(e.g., avoid performing persistence operations on helpful func-
tions which operate on PM and DRAM). Regardless of where
HIPPOCRATES inserts a fix, the fix is provably safe.

We use HIPPOCRATES to automatically fix 23 durability
bugs in real-world and research systems. We show that HIP-
POCRATES produces fixes that are functionally equivalent to
developer fixes. Then, we show that HIPPOCRATES produces
fixes with strong performance. Notably, we show that a PM
port of Redis using HIPPOCRATES fixes can attain even better
performance than a manually-developed PM-port of Redis.

References

[1] Paul Alcorn. Intel Optane DIMM Pric-
ing. https://www.tomshardware.com/news/
intel-optane-dimm-pricing-performance, 39007.
html, 2019.

[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
Unassisted and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’08, page 209-224, USA, 2008. USENIX Association.

Intel. Intel® Optane™ DC Persistent Memory. http://wiww.

intel.com/optanedcpersistentmemory, 2019.

[4] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu,
Amirsaman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu,
Subramanya R. Dulloor, Jishen Zhao, and Steven Swanson. Ba-
sic performance measurements of the intel optane dc persistent
memory module, 2019.

[5] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas

Wenisch, Aasheesh Kolli, and Samira Khan. Cross-failure

bug detection in persistent memory programs. In Proceedings

of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems,

pages 1187-1202, 2020.

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and

Samira Khan. Pmtest: A fast and flexible testing framework

for persistent memory programs. In Proceedings of the Twenty-

Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 411—

425, 2019.

[7] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift,
Haris Volos, and Kimberly Keeton. An analysis of persis-
tent memory use with whisper. In Proceedings of the Twenty-
Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
17, page 135-148, New York, NY, USA, 2017. Association
for Computing Machinery.

[8] Ian Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin
Kwon, Simon Peter, and Baris Kasikci. AGAMOTTO: How
Persistent is your Persistent Memory Application? In /4th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20), pages 1047-1064. USENIX Association,
November 2020.

[9] Kevin Oleary. How to Detect Persistent Memory Programming
Errors Using Intel® Inspector - Persistence Inspector,
2018. https://software.intel.com/en-us/articles/detect-
persistent-memory-programming-errors-with-intel-inspector-
persistence-inspector.

[10] PMDK. An introduction to pmemcheck. https://pmem.io/

2015/07/17/pmemcheck-basic.html.

[11] Steve Scargall. Debugging persistent memory applications. In

Programming Persistent Memory, pages 207-260. Springer,

2020.

3

—

[6

—

https://asplos-conference.org/papers/
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
http://www.intel.com/optanedcpersistentmemory
http://www.intel.com/optanedcpersistentmemory
https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html

